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Abstract: In this paper, the approach based on FIR (Finite Impulse Response) filters,
that has been shown to be very efficient for planning time-optimal trajectories composed by
polynomial segments, is extended to the design of trajectories characterized by profiles of
velocity, acceleration, jerk or even higher derivatives composed by trigonometric functions. A
simple discrete-time filter, able to provide as output this kind of trajectories when a rough
input signal composed by step functions is applied, is proposed, with two main consequences:
1) the generation of the trajectory results very efficient, even with high degree of continuity
and the planning can be performed online; 2) the equivalence between the considered class of
trajectories and linear filters allows an immediate frequency characterization of the motion law.
In this way, it is possible to define the trajectories by considering constraints expressed in the
frequency-domain besides the classical time-domain specifications, such as bounds on velocity,
acceleration, and so on. Two examples illustrates the main features of the proposed trajectory
planner, in particular with respect to the problems of multi-point trajectory generation and
residual vibrations suppression by proper reference inputs application.
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1. INTRODUCTION

The growing need of planning trajectories online has led
to the development of a number of filters able produce mo-
tion profiles with the desired degree of smoothness start-
ing from rough reference signals, such as step functions,
which set the desired final position. In Zanasi and Morselli
(2003); Zheng et al. (2009), time-optimal trajectory plan-
ners with bounds on velocity, acceleration and jerk have
been proposed. Basically, these systems are composed by a
chain of integrators (whose output represents the desired
trajectory) properly feedback controlled in order to track
in the fastest way the reference input while remaining
compliant with the given constraints. More recently, Bia-
giotti and Melchiorri (2011) show that time-optimal multi-
segment polynomial trajectories with constraints on the
first n derivatives are equivalent to the outputs of a chain
of n moving average filters (see Sec. 2 for a brief overview)
and, in general FIR, (Finite Impulse Response) filters
(with rectangular impulse responses, as in case of moving
average filters, but also sinusoidal impulse responses) are
used for smoothing given motion profiles, see Nozawa et al.
(1985); Kim et al. (1994); Jeon and Ha (2000).
In many works the adoption of trigonometric functions is
proposed with the purpose of planning trajectories with
smoother acceleration or jerk profiles that reduce residual
vibrations when applied to resonant systems, see Li et al.
(2007), but to the best of the authors’ knowledge, besides

experimental evidences, no analytical explanations of the
advantages that they involve are present in the literature.
In this paper, the generation of trajectories with trigono-
metric (and in particular sinusoidal) velocity, acceleration
or jerk (or higher derivatives) profiles is related to the
design of dynamic systems composed by moving average
filters and a special type of FIR filter with a sinusoidal
impulse response. Similarly to time-optimal polynomial
trajectories, the characteristic parameters of each filter
can be computed on the basis of the desired bounds
on velocity, acceleration, jerk, and so on. Furthermore,
the equivalence between dynamic filters and trajectories
expressed by analytic functions provides an immediate
characterization of the motion from a spectral point of
view. As a consequence, it is also possible to select the
filters parameters with the purpose of properly shaping
the frequency spectrum of the trajectory.

2. TIME-OPTIMAL MULTI-SEGMENT
TRAJECTORIES AND DYNAMIC FILTERS

In Biagiotti and Melchiorri (2011), it is shown that a multi-
segment trajectory qn(t) of order n, compliant with the
symmetric constraints

q
(i)
min = −q(i)max, i = 1, . . . , n+ 1

can be obtained by filtering a step input with a cascade of
n dynamic filters, each one characterized by the transfer
function



h · u(t) qn(t)q1(t) q2(t) qn−1(t)
M1(s) M2(s) Mn(s)

Fig. 1. System composed by n filters for the computation
of an optimal trajectory of class Cn−1.

Mi(s) =
1

Ti

1− e−sTi

s
(1)

where the parameter Ti (in general different for each filter
composing the chain) is a time length, see Fig. 1. In
mathematical terms, this means that

qn(t) = h · u(t) ∗m1(t) ∗m2(t) ∗ . . . ∗mn(t) (2)

where u(t) denotes the unit step function, h is the desired
displacement,mi(t) = L−1{Mi(s)} is the impulse response
of each filter, and ∗ indicates the continuous time convo-
lution operator. The smoothness of the trajectory, that is
the number of continuous derivatives, is strictly tied to
the number of filters composing the chain. If we consider
n filters, the resulting trajectory will be of class Cn−1. By
increasing the smoothness of the trajectory, its duration
augments as well. As a matter of fact, the total duration of
a trajectory planned by means of n dynamic systemsMi(s)
is given by the sum of the lengths of impulse response of
each filter, i.e.

Ttot = T1 + T2 + . . .+ Tn.

The parameters Ti can be set with the purpose of imposing
desired bounds on velocity, acceleration, jerk and higher
derivatives, by assuming

T1 =
|h|
q
(1)
max

and Ti =
q
(i−1)
max

q
(i)
max

, i = 2, . . . , n (3)

with the constraints

Ti ≥ Tn + . . .+ Ti+1, i = 1, . . . , n− 1.

These conditions are necessary to guarantee that the

output trajectory never exceeds the limits q
(i)
max.

In order to evaluate the trajectory at discrete time instants
kTs, being Ts the sampling period, the system composed
by n filters may be discretized by applying on each filter
Mi(s) the backward differences method that leads to the
expression of a moving average filter

Mi(z) =
1

Ni

1− z−Ni

1− z−1
(4)

where Ni = Ti/Ts denotes the number of samples (not
null) of the filter response. Therefore, the implementation
of the proposed trajectory generator on a digital controller
can be achieved by considering the function Mi(z) in lieu
of the corresponding function Mi(s) in the block-scheme
of Fig. 1. Note that the digital implementation of each
filter only requires two additions and one multiplication.
As a consequence, even for high values of the degree n, the
trajectory generator (composed by n filters) results very
efficient from a computation point of view.
Finally, the structure of the trajectory planner, composed
by linear filters, provides an immediate characterization of
the resulting trajectories in terms of frequency content. By
Fourier transforming (2), one obtains that the expression
of the amplitude spectrum of qn(t) and of its derivatives

q
(k)
n (t) of generic order k results

|Q(k)
n (jω)| = h · |ωk−1| · |M1(jω)| · |M2(jω)| · . . . · |Mn(jω)|

with

|Mi(jω)| =
∣

∣

∣

∣

sinc

(

ω

ωi

)∣

∣

∣

∣

(5)

where sinc(·) denotes the normalized sinc function defined

as sinc(x) = sin(πx)
πx and ωi =

2π
Ti

. Note that the function

|Mi(jω)| is null for ω = k ωi, with k integer. This
property can be profitably exploited to properly choose
the parameters of the trajectory/filter with the purpose
of nullifying the spectrum of the trajectory at critical
frequencies, for instance the eigenfrequencies of the plant.
For this aim, if ωr denotes a resonant frequency, it is
sufficient to assume

ωi =
ωr

l
⇔ Ti = l

2π

ωr
, l = 1, 2, . . . . (6)

3. MULTI-SEGMENT TRAJECTORIES WITH
POLYNOMIAL AND TRIGONOMETRIC SEGMENTS

The same structure of the filter for the generation of
time-optimal trajectories, reported in Fig. 1, can be ex-
ploited to plan motion profiles characterized by velocity,
acceleration, or jerk (or higher derivatives, depending on
the order of the trajectory) composed only by sinusoidal
functions, leading to the so-called modified trapezoidal
velocity trajectory, modified double-S velocity trajectory,
etc., see Biagiotti and Melchiorri (2008). In this case, it
is sufficient to consider in the chain of averaging filters
Mi(s), characterized by a rectangular impulse response, a
single filter whose impulse response is

si(t)=











π

2Ti
sin

(

π

Ti
t

)

if 0 ≤ t ≤ Ti

0 otherwise

(7)

=
π

2Ti

[

sin

(

π

Ti
t

)

u(t) + sin

(

π

Ti
(t− Ti)

)

u(t− Ti)

]

where u(t) denotes again the step function, and Ti is a
parameter that defines the time duration of the response,
which is finite as shown in Fig. 2. By Laplace transforming
(7), the transfer function of the filter can be readily
obtained:

Si(s) =
1

2

(

π

Ti

)2
1 + e−sTi

s2 +

(

π

Ti

)2 . (8)

Note that the system Si(s) has a unitary dc gain.
The generation of a trajectory qn,h(t) whose n-th derivative
is only composed by sinusoidal functions (and therefore is

timeTi

1

Ti

π

2Ti

Fig. 2. Impulse response of the filter Si(s) defined by (8)
(solid line) compared with that of an average filter
Mi(s) (dashed line) characterized by the same time
constant Ti.



h · u(t) qn,h(t)q1(t) qn(t)qn−1(t)
M1(s) Mn(s) Sn+1(s)

Fig. 3. System composed by n+1 filters for the computa-
tion of the trajectory qn,h(t) of class Cn+1, whose n-th
derivative is only composed by sinusoidal functions.

of class Cn+1) can be achieved by adding the “sinusoidal”
filter Sn+1(s) at the end of a chain of n filters Mi(s), as
shown in Fig. 3. With this configuration, it is possible to
find the following relation between the maximum values
of q(n)(t) and q(n+1)(t) and the characteristic parameter
Tn+1 of the filter:

q(n)max(t)
π

2Tn+1
= q(n+1)

max (t).

As a consequence, if constraints on the n-th and (n +
1)-th derivative are given, the time-length Tn+1 can be
computed as

Tn+1 =
q
(n)
max

q
(n+1)
max

π

2
. (9)

3.1 Spectral characterization of the trajectory

The spectral contents of trajectory qn,h(t), provided by the
generator of Fig. 3 fed by input step functions, is given by
the contribution of all the n + 1 filters and by the input,
i.e.

Qn,h(jω) =
h

jω
·M1(jω) · . . . ·Mn(jω) · Sn+1(jω)

where Si(jω), with i = n+ 1, is the frequency response of
the sinusoidal filter:

Si(jω) =

(

π

Ti

)2

e−j
ωTi

2

cos
(

ωTi

2

)

−ω2 +

(

π

Ti

)2 .

In particular, the amplitude spectrum of the generic k-th

derivative of the trajectory (q
(0)
n,h = qn,h) is

|Q(k)
n,h(jω)| = h · |ωk−1| · |M1(jω)| · . . . · |Mn(jω)| · |Sn+1(jω)|

where Mi(jω) are defined in (5) and

|Si(jω)|=
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π
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)2
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2

)∣

∣

∣

∣

∣

∣

−ω2 +
(

π
Ti

)2
∣

∣

∣

∣

=

∣

∣cos
(

ωTi

2

)∣

∣

∣

∣

∣
1−

(

ωTi

π

)2
∣

∣

∣

=

=

∣

∣

∣
cos

(

π ω
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(

ω
ωi/2

)2
∣

∣

∣

∣

with ωi = 2π
Ti

. In Fig. 4 the magnitude spectra |Si(jω)|
and |Mi(jω)| are compared. Note that |Si(jω)| = 0 for

ω = (2k+1)
2

2π
Ti

, k = 1, 2, . . ., and therefore the first zero

(ω = 3
2ωi) is located at a frequency 1.5 times higher

than the first zero of the filter Mi(s) with the same time
constant Ti. This means that, in order to nullify |Si(jω)|
at a specific frequency ωr, it is necessary to assume a time-
length Ti which is 1.5 higher than the corresponding time
period that assures |Mi(jωr)| = 0, i.e.

ωi =
2

3

ωr

l
⇔ Ti = l

3

2

2π

ωr
, l = 1, 2, . . . . (10)
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Fig. 4. Magnitude of the frequency response of Si(s) (solid
line) compared with that of Mi(s) (dashed line).

On the other hand, it is worth noticing that the decreasing
of |Si(jω)| at high frequencies is quite faster than |Mi(jω)|,
characterized by the same Ti. Therefore, by using a sinu-
soidal filter in lieu of an average filter the spectral con-
tents of the output trajectory is considerably reduced at
high frequencies. This explains the reason why trajectories
with sine shaped velocity or acceleration, like harmonic
trajectories and modified trapezoidal trajectories, lead to
a consistent residual vibration reduction when applied to
resonant systems, see Li et al. (2007). The equivalence
between trajectories and dynamic filters allows to explain
the effects of trigonometric functions in the definition of
the trajectories and provide a systematic procedure to set
their parameters with the purpose of properly shaping
their spectral content.

3.2 Evaluation of the trajectory at discrete time instants

In order to evaluate the trajectory at time instants kTs, it
is necessary to discretize the filter of Fig. 3. The discrete
transfer function Si(z) of the sinusoidal filter has been
computed by z-transforming the sequence obtained by
sampling (7) with a periods Ts:

Si(z) =
(1− cos( π

Ni

))(z−1 + z−(Ni+1))

1− 2z−1 cos( π
Ni

) + z−2

where Ni = Ti/Ts In this way, the impulse response of
the discrete-time filter coincides exactly with continuous
one at discrete time instants kTs, and is therefore zero
for kTs > Ti. Note that, being cos( π

Ni

) a constant to be

computed only once, the digital implementation of Si(z)
is computationally efficient, requiring four additions and
two multiplications.

4. TRIGONOMETRIC TRAJECTORIES WITH
MIN/MAX CONSTRAINTS

4.1 Trigonometric trajectory of order zero

The analytic expression of the trajectory q0,h(t), obtained
by directly applying a step input function to the sinusoidal
filter (8), can be deduced by integrating the impulse
response of the filter:

q0,h(t) =
h

2

(

1− cos

(

π

T1
t

))

+ q0. (11)

where q0 is the starting point of the trajectory. Note
that (11) is the standard expression of the harmonic
trajectory, whose derivative is (7). In this case the unique
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Fig. 5. Profiles of position, velocity and acceleration of the
harmonic trajectory q0,h(t) obtained with h = 40rad
and vmax = 250rad/s (T1 = 0.2513s).
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Fig. 6. Profiles of position, velocity and acceleration of the
modified trapezoidal velocity trajectory q1,h obtained
with h = 40rad and vmax = 250rad/s and amax =
5000rad/s2 (T1 = 0.16s, T2 = 0.0785s) (a) and of the
modified double-S velocity trajectory q2,h obtained
with the additional constraint jmax = 200000rad/s3

(T1 = 0.16s, T2 = 0.05s, T3 = 0.0393s) (b).

free parameter T1 can be set with the purpose of obtaining
a prescribed maximum velocity, i.e.

T1 =
π

2

h

vmax

as shown in Fig. 5, or of locating the zeros of the frequency
spectrum at precise critical frequencies.

4.2 Trigonometric trajectory of order n ≥ 1

Trigonometric trajectory qn,h of order n ≥ 1, can be easily
obtained by adding average filters Mi(s) into the chain of
FIR filters. For instance, the trajectory q1,h, corresponding
to a modified trapezoidal velocity trajectory characterized
by a sinusoidal acceleration, is generated by considering
one filter Mi(s) besides the sinusoidal filter (see Fig. 6(a)),
while the use of two additional filters Mi(s) leads to a
modified double-S velocity trajectory q2,h, whose jerk is
composed by sine functions (see Fig. 6(b)). Note that the
modified double-S velocity trajectory has been defined for
the first time in this paper on the analogy of the modified
trapezoidal velocity trajectory, since the complexity of its

analytical expression makes its implementation and its use
for practical application quite prohibitive. Conversely, the
generation of this kind of trajectory, and more generally
of trigonometric trajectories of any order n, with dynamic
filters produces only a little increase of the computational
burden.
The parameters Ti, i = 1, . . . , n + 1 can be computed on
the basis of the constraints on velocity, acceleration, jerk,
etc., according to (3) and (9). Therefore if l constraints are
given, the trajectory must be at least of order n = l − 1.
For instance for n = 1

T1 =
h

vmax
, T2 =

π

2

vmax

amax

while for n = 2

T1 =
h

vmax
, T2 =

vmax

amax
, T3 =

π

2

amax

jmax

Note that the time constant Tn+1 always corresponds to
the sinusoidal filter.

5. CASE STUDIES

5.1 Multi-point trajectories

As already mentioned, the proposed filter can be used for
online trajectory generation providing as input a staircase
function, whose constant values are the desired via-points
pj , j = 0, . . . ,m. In order to assure a constant maximum
velocity vmax, the first moving average filter must be
characterized by a variable time constant

T1,j =
hj

vmax
, with hj = pj − pj−1, j = 1, . . . ,m

while, if the desired bounds are not changed, the other
parameters Ti, i = 2, . . . , n + 1 remain constant. This
means that the order N1,j = T1,j/Ts of the first FIR filter
must be modified in runtime whenever the input function
changes. For more details, see Biagiotti and Melchiorri
(2011). In Fig. 7 a modified double-S trajectory passing
trough a set of given points is shown.

5.2 Time- and frequency-domain specifications

In the previous example the parameters of the trajectory
generator are obtained on the basis of constraints (velocity,
acceleration, jerk) expressed in the time-domain. On the
other hand, as already mentioned, it is also possible to
take into account frequency constraints, that may arise
because of critical frequencies of the plant that must track
the motion profile. In order to show the advantage of the
proposed procedure for trajectory planning (in particular
with respect to standard multi-segment polynomial tra-
jectories), we consider the motion system of Fig. 8, com-
posed by two inertias with an elastic transmission lightly
damped, see Lambrechts et al. (2005); Barre et al. (2005);
Meckl and Arestides (1998), whose model (from the motor
position qm to the load position ql) can be described by
the following transfer function

Gml(s) =
Ql(s)

Qm(s)
=

2δωns+ ω2
n

s2 + 2δωns+ ω2
n

(12)

with

ωn =

√

kt
Jl
, δ =

bt

2
√
ktJl

.
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Fig. 7. Complex motion obtained with a second order
trigonometric trajectory passing through a sequence
of via-points p = {0, 20, 40, 100, 60, 0}, with the same
constraints of Fig. 6(b).
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Fig. 8. Lumped constant model of a motion system with
elastic transmission.

Parameter Symbol Value Unit

Motor inertia Jm 0.72× 10−5 kgm2

Load inertia Jl 0.23× 10−5 kgm2

Spring stiffness kt 0.156 Nm
Internal damping bt 1.0× 10−5 Nms

Table 1. Motion system parameters.

The parameters of the system, reported in Tab. 1, are
derived from Lambrechts et al. (2005), as well as the
trajectory constraints, that have been already adopted
in the examples of Fig. 6(b) and Fig. 7. The resonant
frequency of the system results ωr = ωn ≈ 260 rad/s.
We suppose that an ideal control system imposes to

the (rotor) inertia Jm the desired motion profile, that is
qm(t) = qref (t), being qref (t) a trajectory obtained with
the filter proposed in previous sections, and we analyze the
effects of a particular choice of the trajectory parameters
on the dynamic behavior of the plant and in particular
on the tracking error, defined as ε(t) = qref (t) − ql(t) =
qm(t) − ql(t). Obviously, the choice of the parameters of
the filter is critical only if the spectral components of
the trajectory are appreciable in the neighborhood of the
eigenfrequency of the plant.
In order to meet the time-domain limits vmax, amax and
the additional constraints |Qn,h(jωr)| = 0 , the order of
the multi-segment trigonometric trajectory must be n = 2
(modified double-S velocity trajectory). In this way, the
parameters Ti are set as

T1 =
h

vmax

= 0.16s, T2 =
vmax

amax

= 0.05s, T3 =
3

2

2π

ω3

= 0.0362s.
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Fig. 9. Profiles of position, velocity and acceleration of a
modified double-S velocity trajectory (solid line) and
of a double-S trajectory (dashed line) computed under
the same conditions.
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Fig. 10. Response of the elastic system Gml to a modified
double-S velocity trajectory: tracking error (a) and
frequency spectrum of the acceleration (b).

In Fig. 9 the profiles of position, velocity, acceleration
and jerk of the trigonometric trajectory are compared with
those of a standard double-S velocity trajectory, defined by

T1 =
h

vmax

= 0.16s, T2 =
vmax

amax

= 0.05s, T3 =
2π

ωr

= 0.0209s.

In the nominal case both trajectories behave pretty well,
since they do not cause residual vibrations at the end
of motion. For instance, in Fig. 10(a) the tracking error
obtained with a modified double-S velocity trajectory is
shown. At the end of motion the error is null and does not
present oscillation. This is due to the fact that at ωr the
frequency spectrum of the trajectory is null. In particular,

in Fig. 10(b) the spectrum |Q(2)
n,h(jω)| of the acceleration

profile, hereafter denoted with V (ω), is compared with the
magnitude of the frequency response of

Gε(s) =
1

s2 + 2δωns+ ω2
n

.

since Gε(s) defines the dynamic relation between the ac-

celeration profile q
(2)
n,h(t) and the tracking error ε(t). Note

that in the plot |Gε(jω)| has been properly scaled for the
sake of clarity.
The advantages of modified trigonometric trajectories

over standard multi-segment polynomial trajectories come
out when the real elastic system differs from the nominal
model Gml(s) used to design the trajectory. As a matter
of fact, trigonometric trajectories are more robust when
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Fig. 11. Response of an elastic system with two vibrational
modes to a modified double-S velocity trajectory (a)
and to a double S velocity trajectory (b) computed
under the same conditions.
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Fig. 12. Response of an elastic system with a resonant
frequency different from the nominal one (used to
define the input trajectories) to a modified double-
S velocity trajectory (a) and to a double S velocity
trajectory (b) computed under the same conditions.

the system has unmodeled resonant modes, as in the
case of Fig. 11 where an additional resonant frequency at
ωr,2 = 350rad/s has been considered, or when the real
eigenfrequency differs from the nominal one, as in the
example reported in Fig. 12 where ωr = 300rad/s.
In the case of a second unmodeled resonant mode the
magnitude of the residual vibrations (that is the peak to
peak value of the tracking error ε(t) for t > Ttot ) is
εp2p = 0.0051rad for the modified double-S trajectory,
while for the double-S trajectory is εp2p = 0.0140rad.
The wrong estimation of the resonant frequency leads to
εp2p = 0.0164rad for the modified double-S trajectory and
εp2p = 0.0363rad for the double-S trajectory. A compara-
tive analysis of the frequency spectra of the two different
trajectories, reported in Fig. 13, reveals the reason of this
result: for frequencies higher than ωr the magnitude of
spectral components of q2,h(t) is considerably lower than
the magnitude of the components of q3(t).

6. CONCLUSIONS
In this paper, the generation of trajectories with trigono-
metric velocity, acceleration or jerk (or higher derivatives)
profiles is achieved by means of dynamic systems composed
by moving average filters and a special type of FIR filter
with a sinusoidal impulse response. Similarly to time-
optimal polynomial trajectories, the characteristic param-
eters of each filter can be computed on the basis of the
desired bounds on velocity, acceleration, jerk, and so on.
Furthermore, the equivalence between dynamic filters and
trajectories expressed by analytic functions provides an
immediate characterization of the motion from a spectral
point of view. As a consequences, it is also possible to
select the filters parameters with the purpose of properly
shaping the frequency spectrum of the resulting trajectory.
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Fig. 13. Frequency spectrum of a modified double-S veloc-
ity trajectory (solid line) and of a double S velocity
trajectory (dashed line) compared with the frequency
response of an elastic system with two vibrational
modes (a) and with a resonant frequency different
from the nominal one (b).

With this respect, the use of trigonometric trajectories
leads to more robust results than multi-segment poly-
nomial trajectories. As a matter of fact when they are
applied to resonant systems with uncertain parameters or
unmodeled dynamics, modified trigonometric trajectories
allow a noticeable reduction of residual vibrations, even if
the resonant frequency is not correctly estimated.
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